A MySQL 5.7 Cluster Based on Ubuntu 16.04 LTS – Part 2

In a recent article, I described how to setup a basic MySQL Cluster with two data nodes and a combined SQL and management node. In this article, I am going to highlight a hew more things and we are going to adapt the cluster a little bit.

Using Hostnames

For making our lives easier, we can use hostnames which are easier to remember than IP addresses. Hostnames can be specified for each VM in the file /etc/hosts . For each request to the hostname, the operating system will lookup the corresponding IP address. We need to change this file on all three nodes to the following example:

Now we can lookup IP addresses by the associated hostname.

Adapting Node1

The management and the SQL node are both running in the same VM. Now that we introduced the hostnames for all machines, we need to reconfigure the cluster manager and the MySQL Server. The cluster configuration is stored in the file /opt/mysql/server-5.7/mysql-cluster/config.ini . Replace all the IP addresses with the corresponding host name.

For reconfiguring the SQL node, we need to adapt the file /etc/my.cnf . We need to replace all IP addresses in this file too.

If done, stop the cluster and the SQL node like this:

Adapt the Data Nodes

Replacing the IP adresses with hostnames is pretty straightforward. Change the IP address on each node with the host name in the file /etc/my.cnf :

Startup the Cluster

Now that we have exchanged all IP addresses for the hostname, we can restart the cluster as follows:

Now the cluster should be up again. Verify it like this:

Encrypt Data in Transit

For improving the security of the cluster, we can encrypt the traffic which is exchanged between the MySQL node and the MySQL client. Please note that this encryption method is not specific for the cluster, but rather encrypts the traffic between the MySQL client and the MySQL server. You can use this method also for standard MySQL server setups. It does not cover encryption between the data nodes. By design, data nodes are intended to be run in a private network, not via the open Interwebs.

Create a CA Authority Key and Certificate

To do so, we work on node 1. In the first step we create a CA authority and a CA certificate.

Create a Server Certificate

In the second step, we create a server certificate and sign it with the CA from the previous step.

The server key is ready. We now need to create a client certificate.

Create a Client Certificate

In a rather similar fashion, we create a client certificate.

Now we have created the keys and can configure MySQL for using SSL encryption.

Configure MySQL to use Encryption

Add the following configuration parameters to the /etc/my.cnf file in order to define server and client certificates and keys.

Restart the MySQL server and test the SSL encryption. You can immediately see that the client uses SSL, although it does not really make a lot of sense for the local user.

Let’s create a new test user, allow remote access from and enforce SSL connections:

Switch to the console of the machine and try to connect. You can then display some variables about the SSL configuration.

To verify that you are actually using SSL encryption, the following command helps, it gives SSL: Cipher in use is DHE-RSA-AES256-SHA :

What about the Data Nodes?

So far we encrypted only the traffic between the MySQL client and the MySQL server. This configuration does not differ from a single server or replication setup and does not include the traffic between the data nodes, which is not encrypted at all. MySQL cluster has been designed to be run in a controlled environment within high speed network locally. The MySQL Cluster FAQ states:

It is very unlikely that a cluster would perform reliably under such conditions, as NDB Cluster was designed and implemented with the assumption that it would be run under conditions guaranteeing dedicated high-speed connectivity such as that found in a LAN setting using 100 Mbps or gigabit Ethernet—preferably the latter. We neither test nor warrant its performance using anything slower than this.

Also, it is extremely important to keep in mind that communications between the nodes in an NDB Cluster are not secure; they are neither encrypted nor safeguarded by any other protective mechanism. The most secure configuration for a cluster is in a private network behind a firewall, with no direct access to any Cluster data or management nodes from outside.




Continue reading

A MySQL 5.7 Cluster Based on Ubuntu 16.04 LTS – Part 1

A Cluster Scenario

In this example we create the smallest possible MySQL cluster based on four nodes running on three machines. Node 1 will run the cluster management software, Node 2 and Node 3 will serve as dats nodes and Node 4 is the MySQSL API, which runs on the same VM on Node 1.

What is a Cluster and When to Use it?

When applications grow, there are several possibilities to improve the performance of the database layer. The two technologies used in most scenarios are replication and clustering.

Replication is used for moving the data from a master database to one or more slave databases. Per default, this data exchange is asynchronously. Semi-synchronous data replication can be implemented, but if you need synchronous data replication on several machines, clusters are the way to go.

A MySQL Cluster implements a shared nothing architecture and supports synchronous replication. You can very easily add and remove nodes to your cluster and scale out horizontally. This is especially true if you need scaling the database writes. Clusers use a special storage engine called NDB. This technology offers high-availability and high-redundancy. The documentation for a MySQL 5.7 cluster can be found here.


In this example, we will use VirtualBox as virtualization platform and run three nodes as the smallest possible cluster. In the first step, we create a template virtual machine, which comes with the basic packages, passwordless keybased authentication and a manually configured IP address. We will clone this machine and adapt it to our needs. Parts of this tutorial are based on the digital ocean howto.

The Template

We create the first VM based on Ubuntu 16.05 LTS and install the basics. MySQL requires the libaio1 package, which we will install in the template like this:

Then it is time to download the MySQL Cluster software, which can be obtained for free from the MySQL developer page. This are the two steps necessary:

Assign a static IP address in the file /etc/network/interfaces .

Make sure to install the guest additions, add a MySQL user, copy the MySQL startup script etc. Now the template machine is ready. Shut it down and clone it two times. Make sure to assign a new MAC address and then assign a different, static IP address.

Setting Up the Machines

In the following steps, we are going to setup the virtul machines. We run three machines which provide four services.

Install the Manager on Node 1

The cluster will be controlled via Node 1. First, create a data directory, where we will store the configuration files.

Then create the configuration file. This file defines the cluster and will be read during the startup of the cluster. Each node needs to have a unique id. Usualy, the ID starts with 0, but in this example we  defined the node IDs starting from 1 in order to align it with the IP addresses.

Note that if you make changes to the config.ini files, they might not be loaded directly, but are read from a cache file. So if you change for instance the data directory, make sure to delete all cached files, e.g. ndb_1_config.bin.1*.

Install the MySQL Server on Node1

The installation of the MySQL service is pretty straight forward and follows a similar pattern as a regular MySQL setup. You just need to ensure that you use the Cluster Version which we already installed in the template machine and create symlinks accordingly. The configuration of the MySQL Server is done in /etc/my.cnf , as usual. In the following you can see an example configuration.

The most important bits are at the bottom of the file. The command ndbcluster makes the NDB storage engine available and the section [mysql_cluster] points to the cluster management node. In our case, the MySQL server node and the cluster management node are on the same machine. In larger settings it can be benefitial to have a dedicated VM for each task.

Make sure to set the permissions for the data directory correctly and to place the startup script in /etc/init.d/mysql . Make sure to start the MySQL server on Node 1 and check the error.log file for any strange messages.

Setting up the Data Nodes

In the next step, we need to configure the data nodes. Launch Node 2 and login.

The basic configuration is very simple. Just edit the /etc/my.cnf file and provide the address of the management node.

Then we can start the data node with the following command:

You should see something like this:

If something goes wrong, check the error log file called ndb_X_out.log , where  X is the node id. So in this example the actual file name is ndb_2_out.log . Proceed the same way with the second data node called Node 3.

Starting the Cluster

Now comes the great moment. We start the cluster. Please note that you cannot start th cluster before you have configured at least two data nodes and a MySQL API node. All components need to be running, otherwise there will be error messages.

If there are no errors, we can login into the management console for the cluster with the following command.

You can then get an overview of your cluster with the show  command. In the ideal case, the output reads as follows:

Connecting to MySQL

Now that our cluster is up and running, we can interact with MySQL, by connecting to the MySQL server running on Node 1. In order to distribute the data automatically on the nodes, we need to utilise the NDB Engine when we create our tables. This is a distributed version of the InnoDB engine and comes with different features. A comparison is given here. Connect to the MySQL instance on Node 1 as you always would.

Then we can create a test table to see of the system works properly. In contrast to replication, the nodes do not store the whole data each, but rather gets the data distributed over at least two nodes. This is also the reason why we need to have at least two nodes.

Sakila in the Cluster

We can use the famous Sakila database that is available from the MySQL web site to test our Cluster briefly. The following series of commands retrieves the database and imports it into our cluster.

Now the data resides in our cluster and is distributed via our two nodes. We can run the following sample query and the system transparently gets the data from the two nodes.


If you try to start the cluster before all components are up and ready, finding the error can be a bit tricky. In the following example, we did not start the data nodes. The MySQL API node is running, but it does not show up. 

Check the error log of the management cluster in that case. As long as the cluster does not consist of at least two data nodes and a MySQL API node, it will not start.

Continue reading

Das Phrasensammelsurium

Wer viel liest, dem stechen sie unweigerlich ins Auge: sinnbefreite und nervige Phrasen, die sich wie aus dem Nichts in verschiedenen Medien erscheinen und sich plötzlich überall ausbreiten. Journalisten, Autoren und Wissenschafter sind meist Vielleser und machen sich – ganz unbewusst – Ausdrucksweisen, einzelne Begriffe und ganze Phrasen zu eigen. Diese übernehmen sie dann  in ihren eigenen Wortschatz und das Drama nimmt seinen Lauf.

Aufgrund mangelnden Detailwissens meinerseits möchte und kann ich gar nicht auf die sprachwissenschaftlichen Hintergründe eingehen. Man kann sich aber beispielsweise mit Hilfe des Google Ngram Viewers ansehen, wann bestimmte Begriffe im deutschen Buch-Korpus auftauchen. Leider gibt es diese Daten für die deutsche Sprache nur bis einschließlich 2008, weswegen ganz aktuelle Phrasen noch nicht enthalten sind. Abgebildet ist ein Beispiel für das Wort Narrativ, das nun allenthalben herhalten muss.

Der NGram-Viewer 

Selbstverständlich gibt es verschiedenste Projekte, wie beispielsweise die Floskelwoche oder dieser Artikel im Österreichischen Journalist,  die sich ganz diesem Thema verschrieben haben. Ich möchte hier dennoch meine persönliche Liste nervtötender Phrasen und Füllwörter in mehr oder weniger alphabetischer Reihenfolge festhalten. Einsendungen sind sehr willkommen.

  • “Aber nun der Reihe nach …”
  • Alternativlos
  • “Am Ende des Tages”
  • “Ganz einem Thema verschrieben”
  • Inflationär
  • “X kann Y”. Beispiel: “Karl-Heinz kann Social Media”
  • Narrativ
  • “X neu denken”.
  • Postfaktisch
  • “So muss X”. Beispiel: “So muss Technik
  • Spannend!
  • “Wir sind X”. Beispiel: “Wir sind Papst

Phrase einreichen


Continue reading