Reproducible Database Queries in Privacy
Sensitive Applications

Stefan Proll* Rudolf Mayer * Andreas Rauber **

* SBA-Research, Vienna, Austria (e-mail: sproell@sba-research.ory,
rmayer@sba-research.org).
** Institute of Software Technology and Interactive Systems at the
Vienna University of Technology, Austria (e-mail:
rauber@ifs.tuwien.ac.at)

Abstract: Research databases allows scientists to gain sinsights in large datasets and deriving
new knowledge from the data. In many cases the data stored in databases is sensitive and needs
to be protected. Due to the increasing complexity of eScience settings and research projects, data
is often integrated from different data sources stemming from competing data owners. In order
to achieve the research goals, the data needs to be combined and analysed as a whole. As data
owners of such sources may have potential conflicts of interest in certain aspects, a mechanism is
needed which prevents the retrieval and or recombination of privacy related data while still full
access to own data must be granted at all times. For enabling reproducible research, we present
an approach which supports data citation and provides a mechanism for retrieving citable and
privacy preserving datasets from large data sources.

Keywords: Reproducibility, Relational databases, Data handling systems, Data privacy, Data

sets

1. INTRODUCTION AND MOTIVATION

Data is not only the product of computational research,
but also crucial decisions are made on the basis of data.
Whether or not an experiment was considered successful
or a model is considered valuable is often settled on the re-
sultssets delivered from statistical analysis of data. As data
is not only a final product but is transformed, updated or
changed in further process steps, each intermediate result
needs to be tracebla and identifyable. Hence it is a funda-
mental requirement to know which exact data was involved
in the decision making process and its intermediate steps.
Data citation tackles the problem of uniquely identifying,
referencing and citing datasets and their subsets in order
to make them available at a later point in time. The goal
of citing data is to attach a persistent identifier to each
dataset retrieved from the database and use this identifier
as a handle which allows to retrieve the exact same dataset
again. Thus data citation enables the examination, revi-
sion or analysis of data and therefore constitutes evidence
for decisions and how they have been made.

It is clear that the precise dataset needs to be available
for long term in order to review and screen the data which
was used in further process steps. For obvious reasons it is
not sufficient exporting each individual dataset and store
it as data dump in an archive file. For large data volumes
this simple solution does not scale and without additional
metadata the management of datafiles becomes a chal-
lenge. Identifying datasets can be achieved by applying
fingerprinting and checksum mechanisms, but without the
knowledge how the data was derived and how a specific

* Parts of this work are supported by the project DEXHELPP.

subset was selected the reproducibility of data driven ex-
periments is limited.

In many cases the datasets contain sensitive data and pri-
vacy protocols need to be applied. Implementing thorough
permission schemes is essential, but the goal of providing a
secure eScience environment becomes more challenging if
several stakeholders with potentially competing interests
need to exchange data. All participating partners obvi-
ously need access to the data they contributed, but provid-
ing access to aggregated results and compiled resultsets is a
further requirement. The system needs to support analysis
of the data but it needs to prevent the creation of datasets
which contain sensitive data or allow the deduction of such
information via skillful querying.

The goal of this work is identifying the requirements for
enabling secure data citation for arbitrary subsets of inte-
grated and potentially large data sources which maintain
the privacy of the data during the complete data life cycle.
The remainder of this paper is organized as follows: Section
2 provides and overview of the state of the art in data
citation and reproducible research. Section 3 describes the
scenario and identifies the requirements for achieving pri-
vacy aware data citation. Section 4 highlights the specifics
of data citation regarding reproducible database queries
conidering sensitive data in multi-user environments. Fi-
nally Section 5 gives a conclusion and an outlook on future
work.

2. RELATED WORK

In the recent years data driven science and in-silico ex-
perimentation have produced remarkable results and con-

stituted e-Science as a completely new paradigm in many
different disciplines Hey et al. (2009). With growing com-
plexity of experiments it becomes increasingly difficult to
reproduce the resultsMesirov (2010); Mayer et al. (2012)
published in scientific journals and papers. Nevertheless
reproducibility is the most important metric for valid
researchLoscalzo (2012) and requires thorough documen-
tation of all steps Schwab et al. (2000); Sandve et al.
(2013). Different approaches exist in order to preserve
research environments Dudley and Butte (2010) and cap-
turing whole scientific workflows including all software
dependencies and additional contextual information of ex-
perimentsStrodl et al. (2013); Antunes et al. (2014).

In order to completely understand and preserve scientific
experiments, not only the processing steps, protocols, se-
tups and descriptions of the tasks need to be available,
also the data itself needs to be accessible and reusable in
order to reproduce a scientific result. Data citation aims
to make data referencable by providing methods which
allow unique identification. Citation in general is a centura
old tradition established by the need of identifying and
acknowleding the work from peers. Citing articles and
publications is a well established process which allows
scientists to measure the impact of their work by using
biblometrics. Currently there hardly exists a digital anal-
ogon for data citations which would provide researchers
with credit for their data as well, but recent initiatives aim
to alter this behavior and establish recognition for data
products as well Callaghan et al. (2012). Sharing data is
a popular topic in many disciplines, but still no uniform
methods existBorgman (2012). But in many cases sharing
data is neither a goal nor a legal possibility. But being able
to reliably identify and access datasets is fundamental for
reproducing experiments.

Keeping datasets available and acccessible is a challenge.
So far datasets are often deposited on a storage system
and referenced via URLs which point to the location of
the dataset. The well known link rot phenomenon Rumsey
(2002) is a threat to the accessibility of datasets as
locations of files are prone to changes which causes such
links to break. In order to overcome this issue centrally
managed persistent identifiers systems Hans-Werner Hilse
(2006) utilize redirection to resolve new locations of data
files correctly.

As modern research is based on many digital artefacts,
the need of addressing data grew within the last decade.
Researchers work with various data types and formats,
all this fragments are constituting to the final result,
thus archiving and storing the data produced in research
projects is a pressing issue Gray et al. (2002). Databases
are used in many scientific settings and are used for man-
aging large datasets in a reliable way. The query languae
SQL can be used for retrieving versioned datasets of arbi-
trary granularity. In our earlier work we developed a data
citation framework Proll and Rauber (2013a) based on
relational database management systems (RDBMS) and
demonstrated how it can be applied to existing infras-
tructuresProll and Rauber (2013b, 2014). The framework
we presented allows to attach persistent identifiers to the
queries instead of the exported data set. By applying
versioning to the data and timestamped queries the result

set valid at the time of the query execution can be retrieved
at a later point in time.

3. INTEGRATING SENSITIVE DATA SOURCES
(GAP-DRG): REQUIREMENTS

Health data is particularly sensitive to disclosure and
therefore requires protection beyond standard security
measures. In the scenario we introduce in this work, sev-
eral independent organizations contribute sensitive patient
data into one large database, which integrates the data in
a datawarehouse fashion. Each organization obviously has
access to the data which it contributed to the system. Ad-
ditionally each stakeholder may perform defined analysis
steps which do not allow the derivation of new knowledge
which would not be available without the data from other
stakeholders ownership. Hence the system needs to ensure
that only those records may be retrieved, which are either
owned by one particular party or are not classified as
sensitive by other partners. Encrypting all data stored in
the database was not an option as this approach would
hinder querying the data. Hence an approach is needed
which does not rely on encryption.

In general the data can either be retrieved via a SQL
interface or via a Web interface translating user interac-
tions into prepared statements. For obvious reaons, SQL
interface access may be granted only for a limited set of
users. SQL queries must be logged, annotated with and
parsed prior to their execution.

The majority of users will only get access via an applica-
tion interface, which is the preferred way of accessing the
data. Although this method might seem restrictive, this
mode provides several advantages.

As the interface is standardized, only a pre-defined set of
operations on the database is permissible. These opera-
tions are predefined and allow the integration of privacy
preserving methods in a streaight-forward way.

4. DATA CITATION

It is obvious that the data needs to maintained during the
whole data life cycle in order to preserve the information
for the long term. Database management systems (DBMS)
such as PostgreSQL are used for managing large data
sources and maintain the integrity of the data. In order to
make the data citable the data schema has to be adapted
and the database queries need to be made reproducible.

4.1 Preparing the Data Model

In many scenarios, data is not just static but it can also be
highly dynamic. New records can be created, some data
may get updated whereas older records may be deleted.
For this reason the full history of all operations which
either added, altered or deleted any record in the database
system needs to be traced. Still versioning of databases
alone does not allow retrieving a specific result set from
a given point in time from a database. Additionally to
the provenanceBuneman et al. (2006) of any record in the
database, the actual query which was used for retrieving
the dataset needs to be stored with additional metadata.

As most modern RDBMS PostgreSQL does support point
in time recovery (PITR) which can be used for rolling
back the data to a specific date. Although this method
allows querying on top of the data as they were at any
given moment in time, the approach is not feasible for
retrieving historical data in an convenient fashion as it
requires a potentially costly rollback operation to a specific
data version which cannot be reused for other queries. It
is to mention that the term version may be misleading
in the context of data citation. In this paper a version
denotes a specific state of the records in a result set, we
do not refer to a data dump or export which is assigned
a version number or the-like. The same query for instance
will produce different versions of result sets, whenever a
single record contained in the result was changed between
to executions of a query. This being said, the solution does
not scale for data citation which requires a more flexible
approach. Other modules exist which enable “time-travel”
within the data but those are highly vendor specific and
not suitable for long term data retention. The support of
such features may be ended ! or a migration to a different
system may become necessary.

In our earlier work, we described how a database schema
can be adapted for enabling data citationProll and Rauber
(2013a). Depending on the frequency of changes, a differ-
ent implementation needs to be chosen. In the scenario of
this paper, updates occur only when errors are detected
and corrected. Inserts occur at larger volumes and in
batches. As a result, the data citation metadata can be
integrated into the existing tables without the need for a
separate history table. Enabling data citation for relational
databases can be achieved with the following steps:

(1) Analyze existing tables

(2) Introduce metadata columns
(3) Initialize records

(4) Implement Query Store

(5) Adapt queries

In a first step the existing database schema needs to be
analyzed and tables which need to be referencable need to
be selected. Currently the GAP-DRG database consists
of 47 tables and 8 views which require adaptation for
data citation. A primary key is a fundamental requirement
for differentiating the records. All but one table have a
primary key column available, some tables use composite
primary keys. The one table without a unique key requires
the creation of an artificial primary key which can be
created by using a sequence of numbers. In order to store
all versions of the records, each table needs to be equipped
with at least one timestamp column and an event column
marking the state of each record. All insert, update and
delete events are reflected via the state column of each
table.

None of the tables in our scenario does have a suitable
timestamp available, hence the tables need to be altered
and the missing columns need to be added. In a second
step we include two timestamp columns for each table in
order to trace the valid time of each record: valid_from,
valid_until. This allows to measure the lifespan of a
record state conveniently and allows to detect the most

L Until PostgreSQL 6.3 the system used to have a time travel feature
which was removed in later versions

recent version quickly as this record does not have a
valid_until timestamp set. Each record needs to expand
the primary key and include the newly created columns
for guaranteeing uniqueness within a table. Additionally
metadata about the creator of each record needs to be
stored in order to maintain the privacy of the records and
prevent unauthorized access. Database indices are added
to the timestamp columns and the event type column in
order to increase the performance of the system.

In the third step, the existing records in the database need
to be initialized, i.e. the timestamp column needs to be
populated with an appropriate date. As no information
about the insertion history of the data is available, all
records will be initialized with the same timestamp. If no
metadata about the creation time of the tables is available,
additional documentation or system logs may be used in
order to determine the appropriate date.

4.2 Adapting the Query Store

In order to persistently store the results of database queries
and thus enable citations, a query store needs to be imple-
mented in a fourth step. The concept of the query store is
described in Proll and Rauber (2014). In this work we need
to extend the Query Store and adapt it to the requirements
of this scenario. This includes a new hashing method
based on unique sorting, privacy protection of records and
query normalization. The query store records all query
parameters with additional metadata such as timestamps,
identifiers and information about the executing user. The
re-execution of a query also requires to maintain the per-
mission rights of the records as access to a specific portion
of the data may be granted or revoked. This information
needs to be captured and stored in the query store in order
to reproduce who retrieved sensitive data and prove that
access to a specific dataset was granted. For this reason
the query store also serves as an audit trail and needs to
be protected from manipulation. The goal of the query
store is to attach persistent identifiers to query results
and allow retrieving the same data again by re-executing a
query against historical data. A persistent identifier (PID)
uniquely identifies a resource for the long term by utiliz-
ing a managed infrastructure providing additional services
which can be used for accessing the metadata and the
object itself in a reliable way. Instead of attaching a PID
directly to the exported dataset, the PID references the
query which ultimately produces the dataset. The Query
Store needs to detect whether a issued query is already
stored persistently or if a new query needs to be inserted.
In order to validate the re-executed query result for its
correctness, a hash key is computed. A result set is only
considered correct if and only if all records are included in
the same sequence and ordering as in the original query.

It is essential to maintain the sequence of the records in
the result set in order to detect if the result was correct.
The ORDER BY statement itself does not guarantee
stability of the sorting as the sorting sequence may be
non-deterministic due to system internals. In order to
guarantee a reproducible query result set sorting, the
Query Store needs to utilize unique sorting criteria. Hence
the Query Store uses the primary keys of the involved
tables as sorting criteria in order to bring the result set

into a reproducible sorting. The primary keys for each
table can be retrieved by the database table metadata and
thus be applied automatically. This method of primary
key sorting is used for detecting inserted, changed or
removed records within two executions of a query by
calculating a hash key. The Query Store calculates the
hash key by concatenating the fully qualified name of each
column which is requested for inclusion in the SELECT
statement. This allows detecting changes in the sequence
of the columns in the result set. For detecting missing or
added records in a result set, the Query Store iterates over
the primary keys of the involved records computes a hash
key from the involved keys. As the sorting is reproducible,
the hash key can be calculated in a reliable manner.

Each query gets a persistent identifier assigned which
allows referencing a specific dataset by a unique string.
This string can be used for identifying and citing the
dataset in reports or it can be processed by machines
for automated data retrieval. The Query Store needs to
resolve this identifier and re-execute the query in order to
retrieve the dataset. Whenever a dataset is updated, for
instance if a single record was corrected and updated, the
result set needs to get a new identifier assigned. For this
reason one identical query issued at different times may
lead to multiple versions of the data set.

The Query Store also calculates a hash key for the query
itself in order to detect duplicates. In order to detect such
queries, the Query Store needs to normalize each query
in order to detect deviations of queries which do not have
an influence of the result set. Details on the normalization
step are given in the Section 4.3. Furthermore, the Query
Store checks whether the records of a result set have been
updated between two executions of a query. Therefore an
attribute storing the latest update of a record of the result
is stored for each query. If no record has been updated
between two executions of a query, the Query Store can
immediately issue the result set known from a previous
execution and thus can detect identical queries. If there
was an update the Query Store assigns a new PID to the
query and updates the metadata accordingly.

The Query Store also contains the metadata describing
the permission rights and the ownership of the data. A
data owner may always execute queries which only contain
records where the owner is identical to the executing user.
More complex permissions may be granted on query level
and are evaluated before the data may be retrieved. As
the permission might be revoked or newly granted, this
information needs to be versioned as well.

4.8 Query Normalization

SQL is a very flexible language which allows expressing
queries delivering the same results in multiple ways. In or-
der to detect duplicate queries and calculate reliable query
string hashes, the queries issued against the database
system need to be normalized. In order to achieve repro-
ducible SQL query strings, we generate an abstract syntax
tree of the SELECT statements and sort the parameters
and arrange parenthesis in an appropriate fashion. In order
to remain independent from the actual database vendor,
we adapted the existing SQL parser engine used by the

open source DBMS FoundationDB? which can be used
for parsing several SQL dialects. This parser can be used
for generating abstract syntax trees from SQL statements.
We implemented a custom Visitor pattern in order to store
the tree in a relational table scheme. The parser library is
capable of normalizing SQL queries and sort the resulting
syntax tree in a reproducible fashion. This enables the
Query Store to detect duplicate queries by calculating a
hash of the normalized query strings. We transform all
query parameters to lower case letters and remove trailing
or leading spaces.

4.4 Citing SQL Result Sets

The fifth step involves adapting the query mechanism for
retrieving the correct version of the data. In order to
enable and use data citation the system needs to maintain
the timestamps and update the state information of each
record. Database specific methods such as triggers can be
used for hiding the complexity of the Query Store and the
data versioning completely from end users. As the system
is based upon timestamped and versioned data and utilizes
a query based approach, existing database queries used in
applications, e.g. in prepared statements in the source code
of applications, need to be adapted in order to retrieve
the latest version of the data only. This can be achieved
by adding the timing and event type columns to query
criteria and ensuring that records marked as deleted are
not included in the result set.

In order to retrieve a historical version of a dataset,
the system needs to resolve the provided PID to the
appropriate query. Then the system needs to rewrite the
query and append the timing information of the original
query execution time as an additional criterion to the
original SELECT statement. By limiting the valid_until
timestamp to the execution time and the event type to
inserted and updated, the system retrieves the appropriate
records only. Calculating the hash of the result set provides
evidence for the correctness of the historic result set.

4.5 Complex Queries

The system we proposed so far works well with sim-
ple SELECT statements, unfortunately reality demands
more complex queries. Modern RDBMS support a large
variety of operations, aggregations and also randomized
operations. Whenever a query produces non-deterministic
results, the Query Store may not reproduce the exact same
result sets due to the randomness of some operations. User
defined functions (UDFs) can produce non-deterministic
results as well. Therefore a manual step is needed where
the supported UDFs need to be analysed and checked for
non-deterministic operations. A user defined function can
be considered deterministic if it produces the exact same
result for the same input parameters® . Non-deterministic
functions can not be guaranteed to be citable unless the
function can be converted into a deterministic mockup.
The cause of the non-determinism needs to be replaced
in the mockup function by a deterministic counterpart,
producing the same results as for the original query. Ob-
viously this is a manual step which may not always be

2 https://github.com/FoundationDB /sql-parser
3 http://dev.mysql.com/doc/refman/5.1/en/create-procedure.html

possible to achieve. Also operations which are random
or non-deterministic by definition, such as relative time
specifications, seed values and all operations depending on
external input beyond the control of the RDBMS can not
be reproduced. The Query Store marks non-deterministic
queries as not reproducible and provides this fact as meta-
data for the consideration of the user.

5. CONCLUSIONS

It is important to stress that due to the availability of
all versions and their timing information, the solution we
proposed in this paper is not depending on PostgreSQL
or any other database vendor. Although more performant
solutions may be provided by RDBMS internal tools, our
focus was on providing a flexible solution indepenend from
specific software solutions.

REFERENCES

Antunes, G., Bakhshandeh, M., Mayer, R., Borbinha, J.,
and Caetano, A. (2014). Using ontologies for enterprise
architecture integration and analysis. Complex Systems
Informatics and Modeling Quarterly.

Borgman, C.L. (2012). The conundrum of shar-
ing research data. Journal of the American
Society for Information Science and Technology,

63(6), 1059-1078. doi:10.1002/asi.22634. URL
http://dx.doi.org/10.1002/asi.22634.
Buneman, P., Chapman, A., and Cheney, J. (2006).

Provenance management in curated databases.
In Proceedings of the 2006 ACM SIGMOD
International ~ Conference on Management of
Data, SIGMOD ’06, 539-550. ACM, New York,
NY, USA. doi:10.1145/1142473.1142534. URL
http://doi.acm.org/10.1145/1142473.1142534.

Callaghan, S., Donegan, S., Pepler, S., Thorley, M., Cun-
ningham, N., Kirsch, P., Ault, L., Bell, P., Bowie, R.,
Leadbetter, A., et al. (2012). Making data a first class
scientific output: Data citation and publication by nerca
s environmental data centres. International Journal of
Digital Curation.

Dudley, J.T. and Butte, A.J. (2010). Reproducible in
silico research in the era of cloud computing. Nature
biotechnology, 28(11), 1181.

Gray, J., Szalay, A.S., Thakar, A.R., Stoughton,
C., and Vandenberg, J. (2002). Online scientific
data curation, publication, and archiving. In
SPIE Astronomy Telescopes and Instruments,
MSR-TR-2002-74, 6. Waikoloa, Hawaii. URL

http://research.microsoft.com/apps/pubs/
default.aspx?7id=64568.

Hans-Werner Hilse, J.K. (2006). Implementing
Persistent Identifiers: QOverview of concepts,
guidelines and recommendations. Consortium
of European Research Libraries, London.
URL http://www.cerl.org/publications/
report_on_persistent_identifiers.

Hey, T., Tansley, S., and Tolle, K. (2009).
Paradigm: Data-Intensive Scientific Discovery.
crosoft Research.

Loscalzo, J. (2012). Irreproducible experimental results
causes,(mis) interpretations, and consequences. Circu-
lation, 125(10), 1211-1214.

The Fourth
Mi-

Mayer, R., Strodl, S., and Rauber, A. (2012). On the
complexity of process preservation: A case study on ane-
science experiment. In Proceedings of the 9th Interna-
tional Conference on DigitalPreservation (iPres 2012).

Mesirov, J.P. (2010). Computer science. accessible repro-
ducible research. Science (New York, NY), 327(5964).

Proll, S. and Rauber, A. (2013a). Citable by Design -
A Model for Making Data in Dynamic Environments
Citable. In 2nd International Conference on Data Man-
agement Technologies and Applications (DATA2013).
Reykjavik, Iceland.

Proll, S. and Rauber, A. (2013b). Data Citation in Dy-
namic, Large Databases: Model and Reference Imple-
mentation. In IEEE International Conference on Big
Data 2013 (IEEE BigData 2018). Santa Clara, CA,
USA.

Proll, S. and Rauber, A. (2014). A Scalable Framework for
Dynamic Data Citation of Arbitrary Structured Data.
In 3rd International Conference on Data Management
Technologies and Applications (DATA2014). Vienna,
Austria.

Rumsey, M. (2002). Runaway train: Problems of per-
mancence, accessibility, and stability in the use of web
sources in law review citations. Law Libr. J., 94, 27.

Sandve, G.K., Nekrutenko, A., Taylor, J., and Hovig, E.
(2013). Ten simple rules for reproducible computational
research. PLoS computational biology, 9(10), e1003285.

Schwab, M., Karrenbach, M., and Claerbout, J. (2000).
Making scientific computations reproducible. Comput-
ing in Science & Engineering, 2(6), 61-67.

Strodl, S., Mayer, R., Draws, D., Rauber, A., and Antunes,
G. (2013). Digital preservation of a process and its
application to e-science experiments. In Proceedings of
the 10th International Conference on Preservation of
Digital Objects (IPRES 2013).

